The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.
Output
For each input data set print the number of visible posters after all the posters are placed. The picture below illustrates the case of the sample input.
Sample Input
151 42 68 103 47 10
Sample Output
4 题解:报纸的范围太广了,所以需要离散化。这里离散有点小技巧,就是在两端点的差值大于1的地方再添加一个新的端点。
1 #pragma warning(disable:4996) 2 #include3 #include 4 #include 5 #include 6 #include 7 using namespace std; 8 9 #define lson root<<110 #define rson root<<1|111 #define ll long long 12 13 const int maxn = 100005;14 15 int n, m, T, ans;16 int ls[maxn], rs[maxn], Hash[maxn];17 bool use[maxn];18 19 struct node { int l, r, color; } Tree[4*maxn];20 21 void Pushdown(int root) {22 Tree[lson].color = Tree[root].color;23 Tree[rson].color = Tree[root].color;24 Tree[root].color = -1;25 }26 27 void Build(int l, int r, int root) {28 Tree[root].l = l;29 Tree[root].r = r;30 Tree[root].color = -1;31 if (l == r) return;32 int mid = (l + r) >> 1;33 Build(l, mid, lson);34 Build(mid + 1, r, rson);35 }36 37 void Update(int L, int R, int l, int r, int root, int x) {38 if (l > R || r < L) return;39 if (L <= l && r <= R) {40 Tree[root].color = x;41 return;42 }43 if (Tree[root].color != -1) Pushdown(root);44 int mid = (l + r) >> 1;45 Update(L, R, l, mid, lson, x);46 Update(L, R, mid + 1, r, rson, x);47 }48 49 void Query(int l, int r, int root) {50 if (Tree[root].color != -1) {51 if (!use[Tree[root].color]) {52 ans++;53 use[Tree[root].color] = 1;54 }55 return;56 }57 if (l == r) return;58 59 int mid = (l + r) >> 1;60 Query(l, mid, lson);61 Query(mid + 1, r, rson);62 }63 64 int main()65 {66 scanf("%d", &T);67 while (T--) {68 memset(use, 0, sizeof(use));69 scanf("%d", &n);70 71 int tot = 1;72 for (int i = 1; i <= n; i++) {73 scanf("%d%d", ls + i, rs + i);74 Hash[tot++] = ls[i];75 Hash[tot++] = rs[i];76 }77 sort(Hash + 1, Hash + tot);78 79 int cnt = unique(Hash + 1, Hash + tot) - (Hash + 1);80 int len = cnt;81 for (int i = 2; i <= len; i++) if (Hash[i] - Hash[i - 1] > 1) Hash[++cnt] = Hash[i - 1] + 1;82 sort(Hash + 1, Hash + cnt + 1);83 84 Build(1, cnt, 1);85 for (int i = 1; i <= n; i++) {86 int x = lower_bound(Hash + 1, Hash + cnt + 1, ls[i]) - Hash;87 int y = lower_bound(Hash + 1, Hash + cnt + 1, rs[i]) - Hash;88 //cout << "????" << " " << x << " " << y << endl;89 Update(x, y, 1, cnt, 1, i);90 }91 92 ans = 0;93 Query(1, cnt, 1);94 printf("%d\n", ans);95 }96 return 0;97 }